
(Refer Slide Time: 09:15) 

 

So, how long does this take? So, every time we saw every time we do an insert, we start 

at a leaf node a new leaf node that we create and we walk up to the root. So, the worst 

case of such a thing it depend on the worst case height of the tree, we have to bound the 

height of the tree, the height of the tree by definition if I have a tree like this. So, the 

height of the tree is a longest search path, the length of the longest path from the root to 

them off. 

So, we can either counted terms of number of edges or in number of vertices is ((Refer 

Time: 09:47)) vertices it this soon would be 4, if it is edges it will be 3 does not really 

matter, but the point is that the longest such path will determine the complexity, because 

the long at the path the more times I am in need to swap on the via. So, what can say 

about the height of the heap, so the first thing to notice is that in a heap because of the 

way that we are done it. So, at the root node we have at level 0 we call this level 0, we 

have exactly one node at level 1 at most we have 2 nodes. 

So, we can write is as 2 to the power of 0, this is 2 to the power 1 of course, each of these 

will have 1. So, we will double, so at every level the number of nodes doubles, because 

each of the previous level has two children at most. So, we have to swap, so in this way 

we have number of nodes at level 0 is 2 to the power of 0 at level 1 is 2 to the power 1 at 

any level i is 2 to the power i. So, if you have k levels, then the levels are 0, 1 up to k 

minus 1 from work we just said that is 2 to the 0 plus 2 to the 1 plus 2 to the k, the k 

minus 1 ((Refer time: 10:55)). 
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So, it will be 2 to the 0 plus 2 to the 1 plus 2 to the k minus 1, now this and one way to 

think about it this is a binary number with k 1s. So, binary number k 1s is just 2 to the 

power k minus 1, in other wards if I fill up a binary tree for k levels I will have at most 2 

to the k minus 1 nodes. So, therefore, the number of nodes is exponential are number of 

levels. So, therefore, if I have the number of nodes in the number of levels must be 

logarithmic ((Refer Time: 11:31)). 

And the number of levels is what determines, the logarithmic length of the longest path 

and therefore, insert an any heap will take time log of N, because there is every path is 

going to be guaranty to be of hide log N. 

(Refer Slide Time: 11:46) 

 

So, the other operation that we need to implement for a priority queue is to delete the 

maximum. So, the first question is where is the maximum in a heap? So, the claim is that 

the maximums always at the root, why is that because if I start anywhere I know that 

among the any 3 nodes the maximum is that the top. So, if I look at 33 for example, 33 is 

bigger than 24 and 7, but inductively I know that 24 must be the biggest node in this sub 

tree and 7 must be the biggest node in the sub tree. So, therefore, 34 is 33 bigger than 

both it must be the biggest node overall in sent directly. 

So, the module is the mod 3 maximum values already at the root. So, now the question is 

if the maximum values at the root, how do we remove it from the tree efficiently. 
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So, let say you remove the maximum value, so then this leaf has to the hole, we do not 

have any value at the root now, at the same time because we have remove the value we 

have reduce the number of values in the tree by one. But, we said that the structure of the 

tree is fixed, if you reduced by one we cannot remove the root, we must remove the last 

node going on this left to right top to bottom order. 

(Refer Slide Time: 13:05) 

 

So, we must in fact to remove the node here this node as to go, so now we have a value 

which is homeless, it does not have a root node to belong to and we have a home which 

is empty. So, what we will do is we will move this the 11 to the root. 
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Now, unfortunately because we are disrupt the heap order by doing this taking some 

arbitrary node from leaf moving into the root, we do not know whether we have the heap 

property satisfied or not. Now, the only place where the heap property can be violated at 

the root, because everywhere else the local neighborhood does not touch that it is 

operation, you only other place their neighborhood was touch to is here, but always did 

was remove a node. If you remove a leaf then it cannot violate a heap property, because 

for the upper node it is already bigger than both this tree. 

So, this... So, the only place we could have a violation is here and indeed we do, because 

11 and 24 on the wrong of them. 

(Refer Slide Time: 14:01) 
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So, we will start now the storing the heap property downwards, when we inserted we did 

upstairs, it start here and look at this and then we will look at both directions and we take 

of the bigger one of the two and move it up. So, we swap with the largest child, suppose 

for instance that this admin not 7, but 17 then what could I happened, if you are move 17 

up his viewed about 17 the 11 and 24 and this would not a fix the heap property, because 

this should see they want. 

So, we must take the bigger of the two and move it up, because among these three the 

biggest value must be at the top that is the definition of the max heap property, so we 

exchange the 11 and the 24. 

(Refer Slide Time: 14:44) 

 

So, 24 goes up to the root and then 11 has come in this direction, so we must second 

check whether this part which has now been disturb satisfies the heap property. And of 

course, in this case it does not because 11 and 12 are not in the correct thing. So, again 

among these 3 I have to take the maximum value up, so I take the 12 up and move the 11 

down. 
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And now I have to check this section whether this heap property is satisfied, here it is 

satisfied now we want stop. So, in delete max I start from the root and I walk 

downwards. 

(Refer Slide Time: 15:16) 

 

So, supposing we do this again, then I remove 24. 
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And then I move the 10 from the last leaf to the top. 

(Refer Slide Time: 15:28) 

 

Then, I again have to fix this problem, so I exchange the 10 and the 12. 
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Then, I have to look at this and fix these problems the biggest of this trees is 11 I fix the 

10 and the 11 and I get it. 

(Refer Slide Time: 15:39) 

 

So, now by making sure that I take the biggest one of again I do not walk down the other 

directions. So, I am always walking down as single path, so once again just like insert the 

cost is proportional to the height. And since we know that in a heap the height is 

logarithmic, delete max is also an order log N operation. 
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So, what we have done is, we have shown that a heap actually does both delete max and 

insert in log N time. Now, and other very nice property about heaps is that we do not 

actually need to maintain a very complex tree likes structure, we can actually do heaps in 

arrays to do this we observe that we can canonically number all the nodes in a heap, we 

start number in the root by 0, the first node we fill below the root by 1, the other child 2 

and so on. 

So, I have a numbering 0, 1, 2, so I can actually represent this heap as an arrays heap 

which has this is 0, 1, 2 and so on. Now, in this the claim is the define at a position i, so 

if I have some position i, then the children of this are 2 i plus 1 and 2 i plus 2 you can 

check this everywhere. So, therefore, if I want to actually go to a heap and ask something 

about the heap property, then I will just look at the position i, then I will jump ahead 

position 2 i plus 1 and 2 i plus 2. 

So, completely using the array alone within the array I can look up the children of a node 

and by inverting this operation, if I look at j minus 1 by 2 and take the floor of that then I 

will come back this. So, with the child is 2 i plus 1 2 i plus 2 then the parent is j minus 1 

by 2 and then it might be fractional, so take the integer parts. So, floor means take the 

integer part of j minus 1 by 2. So, this is not j minus half, so it has j minus 1 the whole by 

2. 

So, for example, for 12 j minus 1 is the 11, the 11 by 2 is 5 and half floor of that is 5, so 

the parent at 12 is 5. So, you can check that this is form, so therefore I can now do all my 
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heap manipulation with in an array, which is very convenient I just have to write an array 

and then whenever I do these operations which involved walking up and down the heap I 

will just uses 2 i plus 1 2 i plus 2 formula what are use this floor of j minus 1 by 2 

formula. 

(Refer Slide Time: 18:08) 

 

So, how do we start this whole process of, how do we build a heap from a given set of 

values. So, a very naive strategy would work as follows and given a set of values n 

values x 1 to x n. So, I start with an empty heap and then I insert x 1, so I have a heap of 

size 1 then I insert x 2, so now I heap of size 2 and so on. So, I do n inserts and each 

insert takes log N time at most, so we will take less time we will take log i time if I have 

insert it ((Refer Time: 18:39)), so for but let us take log N as an upper bound. So, overall 

if I insert these N elements I will build the heap also and N log N time. 
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Now, in fact it turns out that there is a better way to do this, so if I look at any array I can 

think of this as a heap I can just imagine that it is ordered. Because, every array as a heap 

interpretation, I can imagine that this is how the array looks, if I think of it the heap of 

course, it does not satisfy the heap property. But, but this is how it would look if I 

arranged as the heap. Now, in this anything which is at the leaf level does not need to be 

check, because it has no children all leaves trivially satisfied the heap property. 

So, I need to start fixing things only at the previous level, so I work back to this. So, I 

come here and x 3 I fix the heap property with respective it is children, when at x 2 at fix 

the property with respective each children, in the process something a up and down to 

only one level, then I will come to x 1 and I will fix it is problem, now this might 

involved 2 levels. So, for each level k minus 1 k minus 2 that it. So, leaves are at level k 

at level k minus 1 k minus 2 on up to the root, we fix the heap property. 

So, as we go up fixing the heap property means, walking down like we did for delete 

max, walking down to the leaf. So, each level we go up the length of this path increases 

by 1, but because the levels double as we go down they have as we go up. So, the 

number of nodes for which we have to check this extra length path goes down by fact 

row. So, now if you do the analysis should we are not going to do exactly, it turns out at 

in this process the number of updates you need to make a heap is actually only order N. 

So, if you use this bottom up heapification, then it will be an order N procedure. 
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So, just to get a guider picture what is going on, so let us assume that we had 15 elements 

I had list and we actually through it do it out like this and the clam is that these n minus 2 

node n by 2 nodes, which is roughly have it is actually 8 out of 15 already satisfied the 

heap property, so this is nothing to be done. 

(Refer Slide Time: 20:50) 

 

So, then I go one level up and I fix these, when I fix these I have to do it for 4 nodes and 

each of them the repair will involve one swap at most or no swaps, worst case will 

((Refer Time: 21:02)) so on. 
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Then, I will up one level and now for each of these nodes I will have to possibly go 

down 2 paths of length 2. So, each of them will involve a height 2 repair that is 2 step of 

thing better than all from 4 nodes I have gone to 2 nodes. So, the only half is mini nodes 

which required only one step node. 

(Refer Slide Time: 21:25) 

 

And then finally, when I go to the root I might have to do kind of fix which involves 

swapping down to the last leaf, so 3 swaps. But, this only one node which does this, so 

therefore since there is trade of that the number of nodes to be fix is halving and the 

length is only increasing by one it turns out that this whole operand needs only order N 

time. 
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So, to summarize go to we have seen is that heaps implement priority queues using 

special balance trees, in these tree both insert and delete max or logarithmic we can use 

this bottom up heapify to actually build a heap and order N time. And what is most 

useful is that this heap can actually be manipulated very simply as an array, now one 

thing which we can do is to invert the heap condition. So, we can say that whenever be 

see v 1, v 2 and v 3 we want v 1 to be smaller than both v 2 and v 3. 

So, this is what is called a min heap, what we have been doing, so for is a max heap. So, 

sometimes you want to keep track of the smallest priority and remove the smallest 

priority item, just think of how for example, you rank people in an exam. So, you are 

somebody if in a competitive exam, the smaller the rank the higher the priority. So, if 

you have rank 1 then you have highest priority. So, this some situation it is natural to 

think of smaller numbers is higher priority. 

So, you want have to do anything very much, we just have to change the heap root to be 

minimum. So, that the each node is smaller than as two children and then everything 

would work exactly as we have done, so for. So, we have two types of heaps, you have 

max heaps and you have min heaps and all the differs in max heaps and min heaps is the 

heap condition on the nodes and the corresponds you whether the operation you 

implement is delete min and delete max. 
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