
(Refer Slide Time: 09:15)

So, how long does this take? So, every time we saw every time we do an insert, we start

at a leaf node a new leaf node that we create and we walk up to the root. So, the worst

case of such a thing it depend on the worst case height of the tree, we have to bound the

height of the tree, the height of the tree by definition if I have a tree like this. So, the

height of the tree is a longest search path, the length of the longest path from the root to

them off.

So, we can either counted terms of number of edges or in number of vertices is ((Refer

Time: 09:47)) vertices it this soon would be 4, if it is edges it will be 3 does not really

matter, but the point is that the longest such path will determine the complexity, because

the long at the path the more times I am in need to swap on the via. So, what can say

about the height of the heap, so the first thing to notice is that in a heap because of the

way that we are done it. So, at the root node we have at level 0 we call this level 0, we

have exactly one node at level 1 at most we have 2 nodes.

So, we can write is as 2 to the power of 0, this is 2 to the power 1 of course, each of these

will have 1. So, we will double, so at every level the number of nodes doubles, because

each of the previous level has two children at most. So, we have to swap, so in this way

we have number of nodes at level 0 is 2 to the power of 0 at level 1 is 2 to the power 1 at

any level i is 2 to the power i. So, if you have k levels, then the levels are 0, 1 up to k

minus 1 from work we just said that is 2 to the 0 plus 2 to the 1 plus 2 to the k, the k

minus 1 ((Refer time: 10:55)).

402

So, it will be 2 to the 0 plus 2 to the 1 plus 2 to the k minus 1, now this and one way to

think about it this is a binary number with k 1s. So, binary number k 1s is just 2 to the

power k minus 1, in other wards if I fill up a binary tree for k levels I will have at most 2

to the k minus 1 nodes. So, therefore, the number of nodes is exponential are number of

levels. So, therefore, if I have the number of nodes in the number of levels must be

logarithmic ((Refer Time: 11:31)).

And the number of levels is what determines, the logarithmic length of the longest path

and therefore, insert an any heap will take time log of N, because there is every path is

going to be guaranty to be of hide log N.

(Refer Slide Time: 11:46)

So, the other operation that we need to implement for a priority queue is to delete the

maximum. So, the first question is where is the maximum in a heap? So, the claim is that

the maximums always at the root, why is that because if I start anywhere I know that

among the any 3 nodes the maximum is that the top. So, if I look at 33 for example, 33 is

bigger than 24 and 7, but inductively I know that 24 must be the biggest node in this sub

tree and 7 must be the biggest node in the sub tree. So, therefore, 34 is 33 bigger than

both it must be the biggest node overall in sent directly.

So, the module is the mod 3 maximum values already at the root. So, now the question is

if the maximum values at the root, how do we remove it from the tree efficiently.

403

(Refer Slide Time: 12:39)

So, let say you remove the maximum value, so then this leaf has to the hole, we do not

have any value at the root now, at the same time because we have remove the value we

have reduce the number of values in the tree by one. But, we said that the structure of the

tree is fixed, if you reduced by one we cannot remove the root, we must remove the last

node going on this left to right top to bottom order.

(Refer Slide Time: 13:05)

So, we must in fact to remove the node here this node as to go, so now we have a value

which is homeless, it does not have a root node to belong to and we have a home which

is empty. So, what we will do is we will move this the 11 to the root.

404

(Refer Slide Time: 13:25)

Now, unfortunately because we are disrupt the heap order by doing this taking some

arbitrary node from leaf moving into the root, we do not know whether we have the heap

property satisfied or not. Now, the only place where the heap property can be violated at

the root, because everywhere else the local neighborhood does not touch that it is

operation, you only other place their neighborhood was touch to is here, but always did

was remove a node. If you remove a leaf then it cannot violate a heap property, because

for the upper node it is already bigger than both this tree.

So, this... So, the only place we could have a violation is here and indeed we do, because

11 and 24 on the wrong of them.

(Refer Slide Time: 14:01)

405

So, we will start now the storing the heap property downwards, when we inserted we did

upstairs, it start here and look at this and then we will look at both directions and we take

of the bigger one of the two and move it up. So, we swap with the largest child, suppose

for instance that this admin not 7, but 17 then what could I happened, if you are move 17

up his viewed about 17 the 11 and 24 and this would not a fix the heap property, because

this should see they want.

So, we must take the bigger of the two and move it up, because among these three the

biggest value must be at the top that is the definition of the max heap property, so we

exchange the 11 and the 24.

(Refer Slide Time: 14:44)

So, 24 goes up to the root and then 11 has come in this direction, so we must second

check whether this part which has now been disturb satisfies the heap property. And of

course, in this case it does not because 11 and 12 are not in the correct thing. So, again

among these 3 I have to take the maximum value up, so I take the 12 up and move the 11

down.

406

(Refer Slide Time: 15:04)

And now I have to check this section whether this heap property is satisfied, here it is

satisfied now we want stop. So, in delete max I start from the root and I walk

downwards.

(Refer Slide Time: 15:16)

So, supposing we do this again, then I remove 24.

407

(Refer Slide Time: 15:25)

And then I move the 10 from the last leaf to the top.

(Refer Slide Time: 15:28)

Then, I again have to fix this problem, so I exchange the 10 and the 12.

408

(Refer Slide Time: 15:34)

Then, I have to look at this and fix these problems the biggest of this trees is 11 I fix the

10 and the 11 and I get it.

(Refer Slide Time: 15:39)

So, now by making sure that I take the biggest one of again I do not walk down the other

directions. So, I am always walking down as single path, so once again just like insert the

cost is proportional to the height. And since we know that in a heap the height is

logarithmic, delete max is also an order log N operation.

409

(Refer Slide Time: 16:00)

So, what we have done is, we have shown that a heap actually does both delete max and

insert in log N time. Now, and other very nice property about heaps is that we do not

actually need to maintain a very complex tree likes structure, we can actually do heaps in

arrays to do this we observe that we can canonically number all the nodes in a heap, we

start number in the root by 0, the first node we fill below the root by 1, the other child 2

and so on.

So, I have a numbering 0, 1, 2, so I can actually represent this heap as an arrays heap

which has this is 0, 1, 2 and so on. Now, in this the claim is the define at a position i, so

if I have some position i, then the children of this are 2 i plus 1 and 2 i plus 2 you can

check this everywhere. So, therefore, if I want to actually go to a heap and ask something

about the heap property, then I will just look at the position i, then I will jump ahead

position 2 i plus 1 and 2 i plus 2.

So, completely using the array alone within the array I can look up the children of a node

and by inverting this operation, if I look at j minus 1 by 2 and take the floor of that then I

will come back this. So, with the child is 2 i plus 1 2 i plus 2 then the parent is j minus 1

by 2 and then it might be fractional, so take the integer parts. So, floor means take the

integer part of j minus 1 by 2. So, this is not j minus half, so it has j minus 1 the whole by

2.

So, for example, for 12 j minus 1 is the 11, the 11 by 2 is 5 and half floor of that is 5, so

the parent at 12 is 5. So, you can check that this is form, so therefore I can now do all my

410

heap manipulation with in an array, which is very convenient I just have to write an array

and then whenever I do these operations which involved walking up and down the heap I

will just uses 2 i plus 1 2 i plus 2 formula what are use this floor of j minus 1 by 2

formula.

(Refer Slide Time: 18:08)

So, how do we start this whole process of, how do we build a heap from a given set of

values. So, a very naive strategy would work as follows and given a set of values n

values x 1 to x n. So, I start with an empty heap and then I insert x 1, so I have a heap of

size 1 then I insert x 2, so now I heap of size 2 and so on. So, I do n inserts and each

insert takes log N time at most, so we will take less time we will take log i time if I have

insert it ((Refer Time: 18:39)), so for but let us take log N as an upper bound. So, overall

if I insert these N elements I will build the heap also and N log N time.

411

(Refer Slide Time: 18:49)

Now, in fact it turns out that there is a better way to do this, so if I look at any array I can

think of this as a heap I can just imagine that it is ordered. Because, every array as a heap

interpretation, I can imagine that this is how the array looks, if I think of it the heap of

course, it does not satisfy the heap property. But, but this is how it would look if I

arranged as the heap. Now, in this anything which is at the leaf level does not need to be

check, because it has no children all leaves trivially satisfied the heap property.

So, I need to start fixing things only at the previous level, so I work back to this. So, I

come here and x 3 I fix the heap property with respective it is children, when at x 2 at fix

the property with respective each children, in the process something a up and down to

only one level, then I will come to x 1 and I will fix it is problem, now this might

involved 2 levels. So, for each level k minus 1 k minus 2 that it. So, leaves are at level k

at level k minus 1 k minus 2 on up to the root, we fix the heap property.

So, as we go up fixing the heap property means, walking down like we did for delete

max, walking down to the leaf. So, each level we go up the length of this path increases

by 1, but because the levels double as we go down they have as we go up. So, the

number of nodes for which we have to check this extra length path goes down by fact

row. So, now if you do the analysis should we are not going to do exactly, it turns out at

in this process the number of updates you need to make a heap is actually only order N.

So, if you use this bottom up heapification, then it will be an order N procedure.

412

(Refer Slide Time: 20:34)

So, just to get a guider picture what is going on, so let us assume that we had 15 elements

I had list and we actually through it do it out like this and the clam is that these n minus 2

node n by 2 nodes, which is roughly have it is actually 8 out of 15 already satisfied the

heap property, so this is nothing to be done.

(Refer Slide Time: 20:50)

So, then I go one level up and I fix these, when I fix these I have to do it for 4 nodes and

each of them the repair will involve one swap at most or no swaps, worst case will

((Refer Time: 21:02)) so on.

413

(Refer Slide Time: 21:05)

Then, I will up one level and now for each of these nodes I will have to possibly go

down 2 paths of length 2. So, each of them will involve a height 2 repair that is 2 step of

thing better than all from 4 nodes I have gone to 2 nodes. So, the only half is mini nodes

which required only one step node.

(Refer Slide Time: 21:25)

And then finally, when I go to the root I might have to do kind of fix which involves

swapping down to the last leaf, so 3 swaps. But, this only one node which does this, so

therefore since there is trade of that the number of nodes to be fix is halving and the

length is only increasing by one it turns out that this whole operand needs only order N

time.

414

(Refer Slide Time: 21:45)

So, to summarize go to we have seen is that heaps implement priority queues using

special balance trees, in these tree both insert and delete max or logarithmic we can use

this bottom up heapify to actually build a heap and order N time. And what is most

useful is that this heap can actually be manipulated very simply as an array, now one

thing which we can do is to invert the heap condition. So, we can say that whenever be

see v 1, v 2 and v 3 we want v 1 to be smaller than both v 2 and v 3.

So, this is what is called a min heap, what we have been doing, so for is a max heap. So,

sometimes you want to keep track of the smallest priority and remove the smallest

priority item, just think of how for example, you rank people in an exam. So, you are

somebody if in a competitive exam, the smaller the rank the higher the priority. So, if

you have rank 1 then you have highest priority. So, this some situation it is natural to

think of smaller numbers is higher priority.

So, you want have to do anything very much, we just have to change the heap root to be

minimum. So, that the each node is smaller than as two children and then everything

would work exactly as we have done, so for. So, we have two types of heaps, you have

max heaps and you have min heaps and all the differs in max heaps and min heaps is the

heap condition on the nodes and the corresponds you whether the operation you

implement is delete min and delete max.

415

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

